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Abstract —[n this paper we seek an explicit tensorial expression which, for each integer m # 0, gives
the stress T'™ conjugate to the strain E™ in the Seth -Hill class. The preceding problem leads us to
find an intrinsic (i.¢. coordinate-free) representation of the solution of the tensor equation displayed
in the title. We obtain the requisite representation by using Hill's principal axis method and the
representation theorem of isotropic tensor functions. We illustrate the general procedure to obtain
an explicit tensorial expression for T by working out the instance s = =3 in detadl.

[ INTRODUCTION

The notion of work conjugacy of stress and strain in solid mechanics was introduced by
Hill (1968} and by Macvean (1968). In the sense of conjugucy, a class of stress measures
may be derived in a natural way. Some of these stress measures have already proved useful
[cf. e.g. Hill (1968): Guo (1980)].

According to Hill, the definition of work conjugacy is as follows : For a given Lagran-
gean-type strain E, if there is a symmetric second-order tensor T such that the stress power
(the rate of specific work) per unit reference volume

w=Ille:D (=Illltr(eD)) )

can be recast as

w=T:E (=t (TE)), 2)

then T may serve as a stress measure and (T, E) is called a conjugate pair. Here o is the

Cauchy stress tensor, D is the stretching tensor (i.e. the symmetric part of the velocity

gradient L) and 11T = det U is the third principal invariant of the right stretch tensor U.
Let U=Y AN, ® N,. where {4} and {N,} are the principal stretches and the sub-

ordinate orthonormal cigenvectors of U, respectively. Hill (1968) proposed a class of strain
measures given by

E(U) =} f(2:)N,® N,, 3

where f(-) is a smooth strictly-increasing scalar function that satisfies f(1) =0 and
S (1) = L. Earlier Seth (1964) discussed a subclass of strain measures E(U) indexed by the
parameter m. where the function
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I
. (A" =D, iaf )
flh) = m(/ ). if m#0 )
In 4. if m=0.

We suggest calling strain tensors from this subclass the Seth-Hill strain measures, and we
denote them with superscript by

tmy __ 7|7 V‘ smo__ ~N N — l m__ M
E™ =% (A= HN,®N, = —(U"=1). ifm#0,
me m

E”=YmiN,®N, =InU. (5)

We mention the following often used strain measures as special cases of (5) :

(i) Green'sstrain: E'? = {(U*=1),
(it) Almansi strain: EC-2 = {(I-U %),
(iti) Nominal strain: E' = U -1,
(iv) Logarithmic strain: E' = In U.

t9

The stress tensors conjugate to EF¥' EY 2 and EY arc well known [cf. Hill (1978); Guo
(1984)]. They are the second Piola- Kirchhoft stress tensor

T =1l F 'eF ', (6)

(where Fis the deformation gradient), the weighted convected stress tensor
T ? = I F'eF (7)
[Truesdell and Noll (1965) called F'a F the convected stress] and the Juumann stress tensor
™ = %(Tu'U-f-UT':)). (8)

Recently Hoger (1987) found a tensorial expression for the stress T conjugate to In U.
FFrom

£ Y= -4Uu U '+U U,

and
w=T 2 ECY=T 2. LU 'K V+E YU

= l('rl ay 1+U R 2)): E( n'
we may add the conjugate stress
'l*t b é(T( : :)U |+U IT( rll) (9)

to the list of conjugate stress tensors for which tensorial expressions have been found.
For positive integers m, we obtain by differentiating (5)
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E(ml = _!__ Z U'"_'UU'- l.

r=1i
Substituting the preceding expression into the identity

T - B = Tm - frtm
yields

T‘”:U=l

m

( Z Um-rT(m)Ur- I) . U

r=1

The arbitrariness of U implies that the stress tensor T"™ conjugate to E"™ satisfies the tensor
equation

m

Y UTXUT = mT, (10)

r=1

Analogously. tor negative integers —m (where m > 0). we have

‘l_ 5: Urv:nUi—ful Ar'

m

E( -m o

r=1

TC-U-fC-b ot om . E(""'.

i L U. I = li[(i U’ -m'r(—m)UlAr):U.’"T‘

r=1
and we draw the analogous conclusion that the stress tensor T conjugate to EC ™
satisfies the tensor equation

m

Y U XU = mT 0, (11

r=|

Pre- and postmultiplying (11) by U™ ', we get an equivalent equation

z U,,,,,XU,‘| = mUm- IT(vl)Um«l‘ ([2)

r=l

which differs from (10) only by the right-hand side. Thus, the crucial point in obtaining an
explicit formula for the conjugate stress T or TC™, where m is a positive integer, is to
solve the tensor equation

m

Z Um«err-l _ C’ (|3)

r=1

where C is a given symmetric tensor. We shall investigate eqn (13) in the next section.

2. TENSOR EQUATION § U"~xu-'=¢C
rwl

We shall investigate the tensor equation
m

Z Um-rxur-l =Cl (|4)

r=1

here U and C are given second-order tensors; U is symmetric and positive-definite; m > 2
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is an integer. We set aside the case m = | because it is trivial. Since simple tensonal
expressions for T'” and T'~ ' are already available in (6) and (7) respectively, the case
m =2 is irrelevant for our present purpose. Nevertheless we mention that our analysis
below remains valid for m=1 and m =2. When m =2, (14) assumes the form
UX+ XU = C, which has been studied extensively in the literature. In particular the reader
is invited to put m = 2 in our analysis below and compare it with the work of Sidoroff
(1978) on the equation UX+ XU = C: both start by appealing to the same representation
formula for the solution X [see (17) and (38) below]. but they depart in taking different
paths to arrive at the coefficients that appear in the representation formula.

The following assertions follow easily from eqn (14) and from the positive definiteness
of U:

(1) When C = O. the homogeneous equation has only a trivial solution.
(i1) Equation (14) has a unique solution X(U. C). which is linear in C and is an isotropic
function of U and C.
(itt) The solution splits into two parts:

X(U.C) = X(U, {C+C")) +X(U. {(C-C")).
(iv) The right-hand side C and the solution X are simultaneously symmetric or skew-
symmetric.

By decomposing the tensors X and C under the principal frame {N,} of U as

X=Yxy,NON,, C=Y¢,N®N, (15)
Ly NS

we immediately obtain the unique solution of (14) in principal representation

Cy
X, = : (16)

" m

Z ;‘:n r/:; 1
r=1

Our objective in this paper is to find an expression of this solution in tensorial form.

Let us first consider the case of symmetric C. By virtue of assertion (ii) and Rivlin’s
representation formutla [cf. Rivlin (1955), eqn (10.17) ; Spencer (1971), Table V and Section
8; Wang (1970), p. 215}, we may cast the (symmetric) solution (for symmetric C) in the
following form:

X(U,C) = 2,1+ 2,U+2;,U +2,C+a5(UC+ CU) +2,(UC+CU?), an
where a,, 25, 24 are functions of the three principal invariants of U:

l = /..| +;.2 +/‘.3,

ll = ).2;.3+;.]}.1 +;'l}':'

Il = A,4.45, (18)
and «,, x.. 2, are functions of I, I, III and three common invariants of U and C that are
lincar in C:

trC = Cyy+Caa+Chs.

tr (UC) = ;.|C'| 1 +/‘.2C1:+;-‘\('\\3.
tl’(U:C) =;.%C”+/'.§sz+/..§("\}. (19)

(19) can be written as
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ret

irC Cyy
wr(UC) | =M ¢, | (20)
tr (U°C) Cy3
where
1A A
M={1 i, i @2n
b Ay A3

is the van der Monde matrix. Because of the linearity of X in C, «,, a; and «; must be linear
combinations of tr C, tr (UC) and tr (U’C) and can be presented as

o, trC cn
% = A4{ tr(UC) | = AM | ¢, |, 22
ay tr (U*C) 33
where the matrix
A = (a”)' (23)

Comparing the componential form of (17) with (16), we have

2 . 2 Cii .
al +a2}-,+1)}»; +a4€,,‘ +215/-,(',, +21(,).f(',,' = ;;‘l};:“":‘*l. 1 == 1,2. 3, (24)
i

Py b3 ol Ci . ‘
gy + a4+ A0+ ae (A7 + 4 )y = — LA i#]. (25)

jm-rar—1
Y ik
rmi

We divide our further discussion into the case where all the eigenvalues of U are distinct
and that which they are not. Henceforth we shall refer to the eigenvalues of U as the
principal stretches.

Case \. All principal stretches are distinct
Since C can be arbitrary and

- ~t
Z }.:""}.;“ l) = (/'-;*"-;)/(/”-f"-lf'),
-}

(25) is equivalent to

. R
Ay iy
. AN =27
1 )n‘f"/.] )i /; Ay
. . 3 2 /3‘)'1
U 444, A3+AiHas )= ;;-;,——-}; . (26)
*3 T A
1 A+4 AR+ \a ,
3 2 i 2 & Al“‘}-z
AT =173 |

Since the determinant of the coefficient matrix
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A:(}_1—}_})(}_‘_}'[)(}'[—,3_:);‘;0. ("7)
(26) has a unique solution :

I (H =274, = 4)
IJ:AZ e e k

m ~m
' Ly Tl

—lg a0 =47

A =

28)

Here the summation Z (or Z later on) 1s carried out for all even permutations (4.7, k) [or

(i".j". k")) of (1,2.3). Substituting (28) back to (24), we have

1Ay 250\ /2, Gy
iy asltas ) = ). (29)
1 Ay 2y \x, g
where
l ioom - N b} a2
= A Xy = QA A, DA (30)
m

Owing to (22), solving (29) is cquivalent to finding the matrix A defined in (23). In fuct, by
denoting the matrices

E=dag(l, 1), U=dag(i,. i, i), (3N

(29) can be written in matrix form as fotlows :

xy Cry
| A
M| «, =< U' "'—:c;E-—'_’xiL/—Zz,,U') ¢ - (32)
m
Ay €3

Substituting (22) into the left-hand side ot (32), in virtue of the arbitrariness of ¢, . we
have

I 5
MAM' = U "—a,£=22U=22,U"
m
and, conscquently,

;
A= Ay A 2y Y =2, A 3

where

AD =M UMY, E=1—-m 0,12 34

[t can be seen that A is symmetric. Having
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rel
j':;“}(;‘3—12) ;'Sil()'l—;'.‘i) ;'l’l:'l(;'l—il)

M= (35)

[T

.3 PR PR .3 P N
A3 — A3 Aj—/q LA

B -

;.)—/..: )."")53 ;.:-;.|

at hand, we can easily use (34) to calculate A"’ and to get the matrix A with the following
entries:

Z ’k(" A3,

(e}

-1 N .2 3
= T T B 200 -,

I 2
aU = A: Z l,“(‘l”____ll‘)~‘ (36)

where

B = ‘_._ - Z[(”_A ) =2(A, + A )4, + 247 ]-w—:«f——. (3D
Ty

m/l"'
Thus, an intrinsic expression for the solution of (14) is

X(U,C) = [a;, tr C+a,: tr (UC) +a,, tr (U*C)JI
+{ot) 2 tr C+ 235 tr (UC) + 255 tr (U*C)|U
+[a;ytr C+ 2y tr (UC) +a,, tr (UC)JU?
+a,C+a5(UC+CU) +a,(U’C+CU?). (38)

Case 2. Two or all of the principal stretches are coalescent

A glance at (24) and (25) reveals that the solution sct of the six simultaneous linear
equations for o, (i = 1,2,...,6) is infinite. Each solution 6-tuple of «,, when substituted
into (17), will give a representation of the solution X(U, C) of (14). Nevertheless, as we
shall see, the right-hand sides of (28) and (36) may be extended by continuity so that their
domains of definition will include the possibility of coalescent stretches. Moreover, when
we use the values of o, (kK =4,5,6) and , (i,j = |,2,3) thus determined from (28) and
(36). eqn (38) stilt delivers one representation of the unique solution X(U, C) in tensorial
form.

First let us revert to the case of distinct principal stretches and examine (25) more
closely. By Cramer's rule,
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2 = e Ay AHA | (39)

It is clear that when we expand the numerator determinant of x, we obtain a rational
function of 4,. A.. 4,. For definiteness, let this rational function be denoted by
S (A1, Aa A3/, where fis a polynomial in 4,, 4,, 2., and

D(’il‘;’-:-":x):: l_[ (Z ;"I"r/; ‘) >0: (40)

1 r=1

here the product is meant to be carried out for all even permutations (7.4, k) of (1.2.3).
If we set 4, = 4, in the numerator determinant of (39), the first two rows of the deter-
minant will be the same; hence we conclude that f(4., 4., 23/ 0(45. A5, 45) = 0. Since
Az Aa 4 > 00 we must have (4., £, 4) =00 1F we regard A4, and 4y as given, fis
stmply a polynomial in 4,. By the remainder theorem, f(4,. 45, 4y) = 0 implies that 4, — 4,
is a factor of £ Similarly we can prove that 4, -4, and 4~ 2, are also factors of /. Hence
= A-g. where g is a polynamial in Ay, 4, 4. Tt follows that x, = ¢/[J, which is clearly
well defined even for the present case of coalescent stretehes. The discussion for a5 and %,
is similar.

After the values of 24, x5 and =z, are determined as above, (24) becomes a system of
simultancous lincar equations for the unknowns x|, 2, and ;. Again, we start by considering
the case of distinet principal stretches. Then, by Cramer's rule,

| s \

Pl Ty — Ry 2%sA = 22640 | A A
me

| l o)

Ay = oo | Coa| mo Ty T Xy T S A s Ay T LA A Ay A3 (41)
A mi~
N

1 . . in

(S5 “T,‘;,“'T-‘14*215/-,\"21(./-3 Ay 23
mAYy

Since 25, a5 and %, satisfy (23), if we set 4, = 4., we obtain the equation

L (42)

smo 1

Ay hxs+ 2032, = -
NS

It follows that the numerator determinant of x, vanishes when 4, = 4,. This determinant
is on expansion a rational function P(4,, 1. 4;)/Q(4 . £;. 4,). where the denominator poly-
nomial

Q=m'iy ' Ay 'O (43)

is always positive. Since P(4, Ar. £1)/Q(4A1. 22, 47) = 0 and Q > 0, we conclude that 4, -4,
is a factor of the polynomial P. Similarly we can prove that /2, —4, and A,—4, are also
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factors of P. In other words P = A-h,, where h (4. 4,.4,) is a polynomial in 4, 4, and
/1. and we conclude that x, = h,/Q. Similarly, 2, = £,/Q and x, = h,/Q. where h, and k,
are polynomialsin 4, 4, and 4;. In fact, a closer examination of {41) and of its counterparts
for 2., 2, reveals that

1

Q(hn('ll'*’h*('**‘*”h,sfn). i=12.73, (44)

% =

where A, are polynomials in 4, 4; and 4;.
Let f;:==h,/Q. We see from (22) and (44) that the matrix

B:=(B,) = AM". (45)

Since both 4, and Q are defined even for coalescent stretches, so do the entries §; of the
matrix B. Indeed we claim that

ﬂ”‘ = ﬂ,k, if A,] = ;"(' (46)

Let us prove the preceding assertion for f,, and f,:. Proofs for other cases are similar.
When the principal stretches are all distinct, f; and f3,, are given by the formulae:

Bll(ilviz-;~3)=

A" ma’
.. oL, ! . .s
Bra(Ar i dy) = A L As(Ay—4y) i —ag—2x5hy = 20443 ). CY)

The system of simultancous equations (25) remains invariant under the exchange of 4, and
A, (i # j). Since we are discussing the case of distinct principal stretches for the moment,
we conclude from the uniqueness of the solution of (25) that «,, a5 and a, are symmetric
functions of 4,, 4, and ;. It follows that

Bii(da Ay, 2y) = f12(41, As 4y) (48)

when the principal stretches are distinct.

As mentioned carlier, we may extend the domain of definition of f#,, and f,, to
include the possibility of coalescent stretches. In fact, fi;, = #,,/Q and f8,; = 1,/Q,
where #,, and h,, are polynomials in 4,, 4, and 4,, and @ > 0 is defined in (43).
Since Q is a symmetric function of the principal stretches, we conclude from (48) that
Ry (Aav iy ay) = Nya(A As  Ay), which implies By (A, As, A3) = 1ya(As, A5, 4y). T Tollows
that f,, = f,. il 4, = 4,.

We obtain the matrix A := (%,) by multiplying the matrix B by M ~". We may write
down the entries of A by using (35) and (45). For instance,

“11=Z

(A2d3(Aa=A2) By + 432Gy = A a4+ A A (A — A ) B1s). 49)

The numerator of «;, in {49) is a rational function of 4, i and J, whose denominator
polynomial is always positive. If we set 4, = 1,, we sce from (46) that this numerator
vanishes. Hence we conclude that 4,— 4, is a factor of the numerator polynomial of the
rational function in question. Similarly 2, — 4, and 4, — 4, are also factors. On cancellation
of A from its numerator and denominator, «,, is expressed as a rational function whose
denominator polynomial is always positive. Therefore we may extend a,, by continuity so
that its domain of definition includes the present case of coalescent stretches. By similar
arguments, we can reach the same conclusion for the other «,;.
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For definiteness let %,,(4,.4,. 43) and % (A A-.43) (L j=1.2.3; k=4,5.6) be the
functions that result from (36) and (28). respectively, after we extend the functions x,, and
%2, by continuity to include the possibility of coalescent stretches. We claim that the
coefficients %, and %, always deliver one representation of X(U, C) via (38) even if two or
all of the principal stretches coalesce.

For simplicity let us rewrite (24) and (25) as

Fi(xy,..... YAy Asa Xt A i i) =0, [=1,2.3,

Gty % Xt Ay i i) =0, m=4.56, (50)

respectively ; here, in rewriting (24). we have used (22) to replace x,, «, and x; by x,
(i, j = 1,2.3). The functions £, and G,, are continuous in all their arguments.

Let us now consider the case where exactly two principal stretches are equal. Without
loss of generality, suppose 4, = 4, # 4. Let {A{"} be a sequence such that ,!L"l A =4,

and A7 # 4, A1 # 4, for each n. Since 277, 4, and A, are distinct, we know from our
previous discussion that €,(A{", 4., 4;) and % (A", 4. 4y) satisty the equations
F/(i” ..... i}].ig.i\q.jh:/:(‘,”.l;.:./..rx) :0. G,,,(i.;‘i5,i6:;.(lrl).;.z,;.g) =0. (5!)

for each n. Since F,. G,,. 4, and %, arc all continuous in their respective arguments, we
conclude that as n — ., 4,(4,. A, i) and 4,(4,. 4, 4,) satisfy the equations

FiEyye Ao S de g drdn i) =00 Go(fadedoidndad) =0, (52)

Hence &, and 4, still deliver via (38) one representation for the unique solution X(U, C) of
(14).

[t is clear that when the principal stretches all coalesce we can prove our assertion in
a similar way.

We summarize our finding in the following :

Theorem. Let U and C be given symmetric second-order tensors, where U is positive
definite. Let m > 2 be an integer. When the principal stretches (ie., the eigenvalues of U)
are distinct, eqn (38), in which the coefficients %, (k = 4,5,6) and a,, (i.j = 1,2, 3) are given by
(28) and (36), respectively, provides un explicit tensorial representation for the unique solution
X(U, C) of eqn (14). The coefficients z, and x,,, which are functions of the principal stretches
A Ay and Ay, cun be extended by continuity so that their common domain of definition
includes the possibility of coalescent stretches. When the coefficients are thus extended,
eqn (38) always delivers one representation of X(U, C) in tensorial form, irrespective of
whether the principal stretches are distinet or not.

For a skew-symmetric C, the skew-symmetric solution of (14) can be cast in the form
[cf. Spencer (1971), Table VI and Section 8] :

X(U.C) = f1,C+ (UC+CU)+f1,(U'C+CU?), (53)

where 35, fi5 and f3, arc functions of [, II, [11. The form of (53) and the last three terms of
(17) are similar, and the system of equations for determining fi5. f5. B4 is the same as (25)
for a,. 25, 2,. Therefore, when the principal stretches are distinet, 4, fi5. B, are given also by
(28) ; morcover, these cocflicients can be extended by continuity to allow for the possibility of
coalescent stretches. Hence we arrive at the following:

Corollary. For a skew-symmetric C. all the conclusions of the preceding theorem stand,
except that the coefficients x,, should be taken as null.

By assertion (iii) at the beginning of this section, the theorem and corollary above
will together provide a tensorial expression for the unique solution X(U, C) of eqn (14)
for any given second-order tensor C. Using an algorithm (cf. Appendix) based on the
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fundamental theorem of symmetric polynomials, we can express all the coefficients x|,
Tyae.. -2 A3y X4 250 2, Of the solution (38) in terms of the principal invariants [, I, III of
U. We shall tllustrate the entire procedure by finding an explicit intrinsic expression for the
conjugate stress T' =¥

3. EXPRESSION FOR CONJUGATE STRESS T'-*

By (12) the stress T'~* conjugate to the strain E'~* = {(1— U ) is the unique solution
of the tensor equation

UX+UXU+XU- = 3U°T U~ (54

Denoting T " = ¥ 1, N, @ N,. we obtain the solution of (54) in principal representation:
)

3L,
Xy = :‘a"‘fi’;ﬁ . (55)
A ad 4]

An intrinsic expression of X is

X(U.T ") = 3 045U+ 7, U 45, T Dy (UTC V4T VU)
+7(UST TR

o tr T Py e (UTC )y tr (UATC DI
Fhute T Vg (UT ) 4yt (UAT U
FLnte T Py, ae UT ) 4yt (U ))U?

+7 TV (UTC VT DU+ (USTC D41 U (56)

il

I

The equations for determining the coeflicients y,, ¥, ..., 7, are

N

71 +',’3/..,+y‘/~.,2+‘/'4’,,+2?5).,(“+27{, .,:l,, = /:, l,,. [= 1,2, 3, (57)

Vel 7s(A AN, +7 (AT + A0, = Ll i#J. (58)

To start with, we proceed as if the principal stretches are distinet. Solving the system
cquivalent to (58). namely
[ L1a2 A
A34Y
At A i+t
DD
A3AG
FERS RV NS L
" a
2123

L;-.;“:z'.;.ﬁz’gi

we obtain the solution y,, v, 7, in the form of rational functions of 4,, 4,, 4,. Cancelling
the common skew-symmetric factor A in the numerators and denominators, we use the
algorithm in the Appendix to get
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3

e = = (TIFHI+F I =11,
E]( )
3 . s

vo= — (T =TFHHI=1F 1D,
oJ
3 3

Te = E(l [T I =11, (59)

where
O=]]G+44+4) =FIF-TFHI-ITI" > 0. (60)

Substituting (59) into (57) and following the procedure described in Section 2. we obtain
the expression for the matrix :

Ci=(3,) = —7,d'" =27, AV 4 (1 =23 A, (61)

where A= M ~'UM T for & =0, 1.2 [cf. (34)]. Let [+= A>T = (§,,). The entries of [
are
Ju=81TIFNE+66 [IFII-S0 IV P43 P +27 FUE =18 P 1T 1T
—ISP I+ P IR+ e =g ur—121r,
Foo=HTTIPHE+ 12111 =S4 P U =60 P I IH+28 P IR HE=31' 11°
+14 I =8P =54 112 1 =8 11° 111,
T =SATHIP+62 T IF HT=36 FIFHE+3 P I0= 141 1P I +8 1 11 11
81 HE = 12117
P =S4T UHP+26 LIPHI =63 IFHP =3P IP+81 U =271 LI + 26 1* 1 UII°
+PII =3P 1P =41 Ur=2711' HIP =4 11",
=27 NP +4 1P =14 P 1P HI+27 1P NP 18 ' 1T I =1 11*
+3P P HI4+4 P 1,
$5y=361IPHI+2 PP =8P 1P HI -S4 1P 1P =8 115, (62)

Extracting the factor

5

A= (;~: —;-1)2()-3 "}-1):(}-1 —)-:)

BTN+ =4 HI-411'=27 11 (63)

from the above expressions for 7, we arrive at the intrinsic cxpression

T = é {(=31IFHI=PHF+30) r TC "+ (=311 + 2P NI+ 2 1P HD) ar (UTC M)

+(=2THHI+3 1) tr (U T )+ [(=3TIP+ 2 PN+ 2 TP ) tr T

F (=21 +PIF+ P+ ) tr (UTC ) = (TP FHD) te (UTC)U
FU(=2TTHI4+3 1) tr TC U — (L IRE4PID tr (UTS ) + 2 1P e (UPTC D)) UR
F3AMP NI+ FUP TV 4 (P - P =TPH)(UTC Y4+ TC ")
+(ITHI=IP)(UT 4T U, (64)
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which is valid for any given U and T' - ".

4. CONCLUDING REMARKS

For each integer m with |m| > 2, the method proposed above delivers an intrinsic
expression for the stress T"™ conjugate to the strain measure E™ in the Seth—Hill class. The
invested labor, however. will increase rapidly with increasing |m|. Symbolic computation
could be useful here, because all operations in this method are algebraic.
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APPENDIX

Throughout this paper we make use of an algorithm that recasts a symmetric polynomial of the eigenvalues
£10 Ay, Ay of the symmetric tensor U in terms of its principal invariants [, IL, [1L. As an illustration, we demonstrate
this algorithm for

A: = (/‘.3-—).,)2(1'4-!'.,)2(/'.. ""::)2.

which is 4 homogeneous symmetric polynomial of degree six. In this instance the algorithm in question proceeds
as follows:

(i) Write down all the elementary homogeneous polynomials of degree six in 4,, 4, and 4,, namely,

A= lf/goﬁ.

B =Y (4474 + 44} A,
‘

C =Y id il
1

D=3 i}i}
i

E=Y (Ait+it4}).
i

F=Y (4,4 +404).
1

G= Z i

SAS 29:16-E
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(ii) Express in terms of the elementary polynomials cach monomual of [, [1. 1l thats of degree six in A, 4. 4,

Hr = A4,
THI =348
'l = 64+38+C,

II'=64+38+D.

FIF =154 +88+2C+2D+E.

Pl =364+22B+9C+6D+3E+F.
I"=904+608+30C+20D+15E+6F+(.

(111} Solve the above linear system with 4 tniangular coetficient matrix to write the elementary polynomials in terms
of I. Il and [11:

A
B=101H-31I.
C=TUH =31+ 3 1,
D= 31 HUI+I+3 1,
E= 2 M+ FIF+4 LI =211 =3 1t
F=FN-U=4FW+7PHIT+210 =311,

G=1"-6PH+61"TH+9FI - 12 HT-211" 3 1T,
(iv) Expand A°, group its terms into clementary polynomials and use the results from (i) to get the final
expression:

AT A+ 2B -2C-2D+ 8

ISTICE +7 TF — 4 1 T -4 1 =27 1T



