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Abstract -In this paper we seek an explicittensorial expression which. for each integer m # O. gives
the stress T'~I wnjugate to the strain E''''' in the Seth -I Ii II class. Th..: prec..:ding probkm I..:ads us to
lind ;ll1 intrinsic (i.e. coordinate·fr..:..:) repres..:ntation of th..: solution of th..: tensor equation displayed
in th..: title. W..: obtain the rel(uisit..: representation by using lIiJrs principal axis methtld and the
representation theorem of is\ltropic tensor funeti\lns. We illustrate the general proc..:dure to obtain
;In ..:xplicit tensorial expression I",r T''''' by working out the inst;lI\ce m = - J in detail.

I. INJ'~Ol)lJCTI()N

The notion of work conjugacy of stress and strain in solid mechanics was introduced by
Hill (1968) and by Macvean (1968). In the sense of conjugacy, a class of stress measures
may be derived in a natural way. Some of these stress measures have already proved useful
[cf. e.g. Hill (1968); Guo (1980»).

According to Hill, the definition of work conjugacy is as follows: For a given Lagran­
gean-type strain E, if there is a symmetric second-order tensor T such that the stress power
(the rate of specific work) per unit n:rerenee volume

can be recast as

Ii' = 1H a: 0 (== III tr(aO»

Ii' = T: E (== tr (TE»,

(I)

(2)

then T may serve as a stress measure and (T. E) is called a conjugate pair. Here a is the
Cauchy stress tensor. 0 is the stretching tensor (i.e. the symmetric part of the velocity
gradient L) and III = det U is the third principal invariant of the right stretch tensor U.

Let U =I i'iN, ® N" where {i.,:, and {N,} are the principal stretches and the sub-

ordinate orthonormal eigenvectors of U. respectively. Hill (1968) proposed a class of strain
measures given by

E(U) = I fO-i)N, ® N,. (3)

where f(') is a smooth strictly-increasing scalar function that satisfies f( I) = 0 and
f' (I) = I. Earlier Seth (1964) discussed a subclass of strain measures E(U) indexed by the
parameter m. where the function
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f(i.) = {~l (i.'" - I l.

In i.

if m * O.

if m = O.

H)

We suggest calling strain tensors from this subclass the Seth-Hill strain measures. and we
denote them with superscript by

I I
E''"' = --)" (i.;"-I)N, ® N, = -(U'"-I), ifm *O.

1/1- m

E!1l1 = I In i.,N, ® N, = In U. (5)

We mention the following often used strain measures as special cases of (5):

(i) Green's strain: E(11 = hU 1 -1).

(ii) Almansi strain: EI1
' = ±(I-U 1).

(iii) Nominal strain: EIII = U -I,
(iv) Logarithmic strain: E"" = In U.

The stress tensors conjugate to E( 1', E' 11 and E' II are well known [ef. Hill (197S); Guo
(19X4)j. They are the second Piola - Kirchhoff stress tensor

T ,ZI
= III F ' t1 F "

(whae F is the deformatioll gradiellt), the weighted convected stress tensor

'1'( 1, = III F't1F

(6)

(7)

[Truesdell and Noll (1965) called 1.'1 t1 I.' the convected stress) and the Jaumann stress tensor

(X)

Recently Hoger (19X7) found a tensorial expression for the stress '1" III conjugate to In U.
From

[' II = -U I

f:( z, = - ±(U I U '+ U I U '),

and

,i'=T' 11:E:' 11=T( 11:±(U 'E:' "+f:( IIU ')

=hT' 11U '+U 'T, - 11 ):E' II

we may add the conjugate stress

T' Ii = ±(T' ZIU I +U 'T' 11)

to the list of conjugate stress tensors for which tensorjal expressions have been found,
For positive integers 1/1, we obtain by differentiating (5)

(9)
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Substituting the preceding expression into the identity

yields
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The arbitrariness of iJ implies that the stress tensor T(m, conjugate to Elml satisfies the tensor
equation

on

L Vm--,XV'- I = mT! ').
r=1

Analogously, for negative integers - til (where til > 0), we have

T( - II : [' II = T 1 -ml : E( -m),

(10)

and we draw the analogous conclusion that the stress tensor 1'( -ml conjugate to E( m)

satisfies the tensor equation

L V' "'XV ' -' = tIIT( -II.

,- I

Prc- and postmultiplying (II) by vm
- I, we gct an equivalent equation

m

L V"'-'XV,-I = mVm - 'TI-I)Vm -',

,~ I

( II )

( 12)

which dill·crs from (10) only by the right-hand side. Thus, the crucial point in obtaining an
cxplicit formula for the conjugatc strcss T(ml or 1'( -m" where m is a positive integer, is to
solve the tensor equation

m

L Vm-'XV,-I = C,
,- I

where C is a given symmetric tensor. We shall investigate eqn (13) in the next section.

2. TENSOR EQUATION f Um ·'XU' - I = C,.,
We shall investigate the tensor equation

"I

L Vm·'XV,-1 = C;
,- I

( 13)

( 14)

here V and C arc given second-order tcnsors; V is symmetric and positivc-definite; m > 2
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is an integer. We set aside the case m = I because it is trivial. Since simple tensorial
expressions for T':l and T( -:1 are already available in (6) and (7) respectively. the case
m = :2 is irrelevant for our present purpose. Nevertheless we mention that our analysis
below remains valid for m = I and m = 2. When m = 2. (14) assumes the form
UX + XU = C. which has been studied extensively in the literature. In particular the reader
is invited to put m = 2 in our analysis below and compare it with the work of Sidoroff
(1978) on the equation UX + XU = C; both start by appealing to the same representation
formula for the solution X [see (17) and (38) below]. but they depart in taking different
paths to arrive at the coefficients that appear in the representation formula.

The following assertions follow easily from eqn (14) and from the positive definiteness
ofU:

(i) When C = O. the homogeneous equation has only a trivial solution.
(ii) Equation (14) has a unique solution X(U. C). which is linear in C and is an isotropic

function of U and C.
(iii) The solution splits into two parts:

(iv) The right-hand side C and the solution X arc simultaneously symmetric or skew­
symmetric.

By decomposing the tensors X and C under the principal frame {N,l ofU as

x = Lx"N, ® N,. C = Lc"N, ® N,. ( 15)
'./ './

("I

we immediately ohtain the unique solution of (14) in principal representation:

\"=." ",

, ~,,, , ~r I
L.. )., ),/
I-I

( 16)

Our objective in this paper is to find an expression of this solution in tensorial form.
Let us first consider the case of symmetric C. By virtue of assertion (ii) and Rivlin's

representation formula [cf. Rivlin (1955). eqn (10.17) ; Spencer (1971), Table V and Section
8; Wang (1970). p. 215]. we may cast the (symmetric) solution (for symmetric C) in the
following form:

where =.t~. !XS. =.t6 are functions of the three principal invariants of U:

I = )" +1.: +).\.

II = )'2)'1+)'\)'\ +).J:.

III ::= ;'1)':;'\' ( 18)

and !X 1.:l:-!X.l are functions of I. II. III and three common invariants of U and C that are
linear in C:

(19) can be written as

tr C = CII +c:: +C31.

t r (UC) = )" C , I + )'2 C 2 2 +). 1ell •

tr(U 2C) = nC11 +).k22+)·kll. (19)



where

~

Conjugate stress and tensor equation L U'''-'XU'- I == C
,.. 2067

(20)

;'1 ')I.j

;'2 ;.~

).} Ai
(21)

is the van der Monde matrix. Because of the linearity of X in C. (Xl> (X2 and (X) must be linear
combinations of tr C. tr (UC) and tr (U2C) and can be presented as

(22)

where the matrix

Comparing the componential form of (17) with (16). we have

i = 1.2.3.

i #: j.

(23)

(24)

(25)

We divide our further discussion into the case where all the eigenvalues ofU are distinct
and that which they are not. Henceforth we shall refer to the eigenvalues of U as the
principal stretches.

Case I. All principal stretches are distinct
Since C can be arbitrary and

(25) is equivalent to

)'2 -).)
~
1'2 -"J
).) -)'1

).j -).j

).\ -).2

).j-J.i

(26)

Since the determinant of the coefficient matrix
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(26) has a unique solution:

1 '" (i.,-i.d:
:x =-- L. ----------

h ~ t ).7 -i.t

(27)

(2t')

Here the summation I (or I later on) is carried out for all even permutations (i.j.k) [or

(i'.j'.k')] of (I. 2. 3). Suhstituting (2t') back to (24). we have

where

(

I i., ~'~)(:XI) (fllCI I)
I I., I.: :x: = fI:C" '

I i" i.i:x, fliC"

(29)

I . Ifl, = I.,
fII

(30)

Owing to (22), solving (29) is equivalent to finding the matrix A dclined in (23). In f~ICt. hy
denoting the matrices

(31 )

(29) can be written in matrix form as follows:

(32)

Substituting (22) into the left-hand side of (32), in virtue of the arbitrariness of :c,,}. we
have

and, conseq uen tly,

MAJI' 1 V' m-:x~E-2"J.\U-2:x(>V2
fII

where

A = I A" ml-:x~A("1_2:X5AIII_2:x(>A'21.
fII

A':':=M 'U:M r ~ = 1-11I.0,1.2.

(33)

(34)

It can be seen that A is symmetric. Having
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(35)

at hand, we can easily use (34) to calculate AI~1 and to get the matrix A with the fol1owing
entries:

I'B""(' ')':tIl = l\~ L. ,)./1.;' I.)-I·k ",
,

(XI) = ~~ I B,).';'d).,-A.k)~'
,

-I, 1 ' " 1')iX'! = -, L. B,(I'.,-I·k)()."-II.;' ,
" l\" i

(36)

when:

Thus, an intrinsic expression for the solution of (14) is

X(U,C) = [iXll trC+(XI~tr(UC)+iX'Jtr(U~c)ll

+ [IX 12 tr C +iXn tr (UC) + iXH tr (U~c)lU

+[iXIJ tr C+iX2J tr(UC)+iXJJ tr(U~c)lU2

+iX4C + (Xs(UC + CU) +iX6(U2C +CU 2).

(37)

(38)

Case 2. Two or all of the principal stretches are coalescent
A glance at (24) and (25) reveals that the solution set of the six simultaneous linear

equations for (Xi (i = 1,2, ... ,6) is infinite. Each solution 6-tuple of iX" when substituted
into (17), will give a representation of the solution X(U,C) of (14). Nevertheless, as we
shall see, the right-hand sides of (28) and (36) may be extended by continuity so that their
domains of definition will include the possibility of coalescent stretches. Moreover, when
we use the values of (Xk (k =4, S, 6) and (1.') (i,j = 1,2,3) thus determined from (28) and
(36), eqn (38) still delivers one representation of the unique solution X(U, C) in tensorial
form.

First let us revert to the case of distinct principal stretches and examine (25) more
closely. By Cramer's rule,
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~ .... .. ...
I. ~ -t" J_ ~

I
:x~ =-

~ '") ~m·-r ",. -- l
...... /., 1"1

r= 1

~ 'm ~~,', \
L /'1 /.~

,= I

(39)

It is clear that when \Ve expand the numerator determinant of :x~ we obtain a rational
function of i.\. i.e- i. , . For definiteness. let this rational function be denoted by
f(i.,. i.> i. 3)iD. where/is a polynomial in i. l • i." i.,. and

(40)

hne the product is meant to be carried out for all even permutations U.j. k) of (I. 2. 3).

If we set i' l = i.~ in the numerator determinant of (39). the first two rows of the deter­
minant will be the same; hence we conclude that IU~. i.;. i. d/O(i.~. i.~. i. d = O. Since
DUe- i.~. i.\) > n. we must have /(i.> i.~. ;.,) = o. If we regard ;'1 and ).\ as given. f is
simply a polynomial in i.(. By the remainder theorem. f(;.~. i.;. i.d = () implies that).1 - i.~

is a factor orr Similarly we c.:an prove that i.~ - i. \ and )., - 1'1 arc also fal:lOn; off Hence
f = L\. 9. where 9 is a polynumial in i.\, ).> ),1. It follows that :x~ = ,{JIO. "vhich is ck4lrly
well defined cven for the prcsent case of c04lll:sccnt stretches. Thc discussion for :15 and :X 6

is similar.
After the values of 'l.,. x.\ and 'l(o are determined as above. (24) becomes a system of

simultaneolls linear equations for the unknowns x I. 2~ and :Xl. Again. we start by considaing
the case of distinct principal stretches. Then. by Cramer's ruk.

..
I.j

I
:x I = ~-

L\
(41 )

Since:1~. :15 and :X n satisfy (25). if we set )., = I.~. we obtain the equation

(42)

It follows that the numerator determinant of :x, vanishes when i., = i. 1 . This determinant
is on expansion a rational function P().J> i.1• )'l)/Q(i.,. )·1' )'1)' """here the denominator poly­
nomial

Q = 111
1i:j' ~ 1i:;' I;:~ '0 (43)

is always positive. Since P(i.~. i.~. i'l)/Q(i.~. i.~. i. 1 ) = 0 ..lIld Q > O. we conclude that ).1 - i.~

is a factor or the polynomial P. Similarly we can prove that i.~-;'I and i. 1 -i.\ are also
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factors of P. In other words P = A·h,. where hl().I';'~';') is a polynomial in A.,. ;.~ and
).). and we conclude that "', =h,IQ. Similarly. iX~ =h~/Q and "'3 =h)IQ. where h~ and h)
are polynomials in ;'1. ;.~ and ).3' In fact. a closer examination of (41) and of its counterparts
for :t:- "') reveals that

(44)

where h
'J

are polynomials in ;.,. ).~ and ;'3'

Let PI):= h,J/Q. We see from (22) and (44) that the matrix

(45)

Since both hif and Q are defined even for coalescent stretches. so do the entries Pii of the
matrix B. Indeed we claim that

(46)

Let us prove the preceding assertion for PII and PI~' Proofs for other cases are similar.
When the principal stretches are all distinct. PII and PI ~ are given by the formulae:

The system of simultaneous equations (25) remuins invariant under the exchange of A., and
)'} (i #- j). Since we arc discussing the case of distinct princip~1l stretches for the moment.
we conclude from the uniqueness of the solution of (25) thut IX4. IXs and C(n arc symmetric
functions of ;'1' ;. ~ and A. J. It follows that

(48)

when the principal stretches ,tre distinct.
As mentioned earlier. we may extend the domain of defInition of P'I and fJI~ to

include the possibility of coalescent stretches. In fact. PII = hI dQ and fJ 12 = II dQ.
where h ll and III~ are polynomials in ).1' A.~ and 1..). and Q > 0 is defIned in (43).
Since Q is a symmetric function of the principal stretches. we conclude from (48) that
1I1I().~';'I.;..d = hd;".).~.;.d. which implies hll()'~';'~';'3) = hd;.~.;.~.;..d. It follows
that fIll = fIl~ if ;., = ;.~.

We obtain the matrix A := (:t,}) by multiplying the matrix B by M -T. We may write
down the entries of II by using (35) and (45). For instance.

The numerator of IX II in (49) is a rational function of ;'10 ;.! and ).) whose denominator
polynomial is always positive. If we set ;'1 = ).!. we see from (46) that this numerator
vanishes. Hence we conclude that )'1 - ).~ is a factor of the numerator polynomial of the
rational function in question. Similarly ;'~-;'3 and ;'3-)'1 are also factors. On cancellation
of A from its numerator and denominator, C( II is expressed as a rational function whose
denominator polynomial is always positive. Therefore we may extend C(II by continuity so
that its domain of definition includes the present case of coalescent stretches. By similar
arguments. we can reach the same conclusion for the other IX,;.
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For definiteness let i'I()~I.I.>;'d and id/'I.I.>I.J) (i,) = 1.2.3; k = 4.5.6) be the
functions that result from (36) and (28). respectively. after we extend the functions 7.'1 and
7.k by continuity to include the possibility of coalescent stretches. We claim that the
coefficients i,/ and i, always deliver one representation of XCV. C) via (38) even if two or
all of the principal stretches coalesce.

For simplicity let us rewrite (24) and (25) as

(50)

respectively; here. in rewriting (24), we have used (22) to replace 7. 1• 7.~ and 7.) by 'X,/

(i.) = \, 2. 3). The functions FI and G", are continuous in all their arguments.
Let us now consider the case where exactly two principal stretches are equal. Without

loss of generality. suppose 1'1 = I.~ #- ;.,. Let [).II"I} be a sequence such that lim ).\nl = 1'2.
"-x:

and I.\nl #- I.~. 1,11'1 #- I., for each n. Since 1.IIIl, I.~ and I., arc distinct. we know from our
previous discussion that i,/(I.\"I. I.~. I.d and id/.\"). 1'2- I.d satisfy the equations

for each n. Since Fl. G",.i" and i. are all continuous in their respective arguments. we
conclude that as n -YC. i"(I.,, I." I..) and idl." I.,,;' ,) satisfy the equations

Hence i'l and i. still deliver via OX) one representation for the unique solution XCV. C) of
( 14).

It is clear that when the principal stretches all coalesce we can prove our assertion in
a similar way.

We summarize our finding in the following:

Theorcm. Let V and C he gircn .IYflll1/etric ,I'ccofld-order tensors. where V is positire
definite. Let m > 2 he (If/ intega. When the principal stretches (i.e .• the eigenvalues of V)
arc distinct. eqn (38). in which the coejjicient.l'::I., (k = 4,5.6) and (X'I (i.) = 1.2.3) are given hy
(28) and (36). re,l'Pectirely. prorides llf/ explicit /('f!.wrial representation for the unique solution
XCV. C) ofeqn (14). The coefficients 'X, and 'X,/. ll'hich arc jimctions of the principal stretches
1'1. 1'1 and 1~.1. can he extended hy continuity so that their common domain 0/ definition
ineludes the possihility 0/ coalescent stretches. When the coefficients are thus extended.
eqn (38) allmys delirers one representation 0/ X( V. C) in tensorial jlJrln. irrespectil't! of
whether the principal stretches are distinct or not.

For a skew-symmetric C. the skew-symmetric solution of (14) can be cast in the form
[cf. Spencer (1971). Table VIII and Section 8] :

(53)

where {J4. fl5 and flo arc functions of I. II. III. The form of (53) and the last three terms of
(17) arc similar. and the system of equations for determining f14' f15' fIb is the same as (25)
for ::1. 4.7.5. 'X o. Therefore. when the principal stretches are distinct. {J4. fl 5. (Jo arc given also by
(28) ; moreover. these coefficients can be extended by continuity to allow for the possibility of
coalescent stretches. Hence we arrive at the following:

Corollary. For a skell'-symmetric C. all the conclusions of the preceding theorem stand.
except that the coe.Uicit'nts :X'I should he taken as null.

By assertion (iii) at the beginning of this section. the theorem and corollary above
will together provide a tensorial expression for the unique solution XCV. C) of eqn (14)
for any given second-order tensor C. Using an algorithm (cf. Appendix) based on the
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fundamental theorem of symmetric polynomials. we can express an the coefficients ell I.
el I~ •••. , el JJ. :X~, :x 5. :x o of the solution (38) in terms of the principal invariants I, II, III of
U. We shall illustrate the entire procedure by finding an explicit intrinsic expression for the
conjugate stress T' - }l.

3. EXPRESSIO:" FOR CO:"JUGATE STRESS T' _1,

By ( I~) the stress T' - JI conjugate to the strain E' - -'I = ~ (1- U - -') is the uniq ue solution
of the tensor equation

(54)

Denoting T( - II = L (,,1'\, ® N" we obtain the solution of (54) in principal representation:
I,}

(55)

An intrinsic expression of X is

X(U,TI II) = i"I+i'~lJ+i'JV~+}'~T' 1l+/~(VT'-Il+T( IIV)

+'o(V~T' "+TI'IV~)

= [i'lltrT( "+}'I~tr(lIT' 11)+}'lltr(V~TI Il)jl

+ li'12 tr T1 II +}'1! tr (UT' II) + i'~ \ tr (U~T' II)jU

+[i'lltrTI 11+}'~\tr(lJT( 11)+,'\\tr(V~T( 11)]U 2

+//1"' 11+}'5(VT' II+T1 IlV)+,',,(V2T1 'I+T( IIV 2). (56)

The equations for determining the coellicients II. }'2, .... In are

(57)

(58)

To start with, we proceed as if the principal stretches are distinct. Solving the system
equivalent to (58). namdy

;.~+;..1

;'1+;'1

;'1 +i.~

~ ., " .,
.... j .... i

Xj+')..;X ;-';-.;:r

we obtain the solution i'~, IS. 10 in the form of rational functions of i. l • i. 2 , i. J • Cancelling
the common skew-symmetric factor L\ in the numerators and denominators. we use the
algorithm in the Appendix to get
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3 , "~
}'~ = 0 (I II- III + 1- III' - II ).

"I
}'j = ~(lII' - r II III - II' III).

where

3 \
}' b = [] (III III -II ).

n ·' .. " I'll' I'll II'0:= (1'.,' + 1',,1"k + 1'.;) = - . - . I - . > O.

(59)

(60)

Substituting (59) into (57) and following the procedure described in Section 2. we obtain
the expression for the matrix:

(61 )

where AI;) = M- I U: M r for ~ = O. I. 2 [cf, (34)J, Let r-,= d ~or = (Yi;)' The entries of r­
are

YII = 81 I II' III'+6611I'III-50 I~ II' III~+.112 11'+27 I~ 1II~-18 I'II III'

-15 I' II~ III + III~ II'III'+4 IS 1II'-81 II~ 1II'-12 II 7
•

YI, = 117 I II' III'+ 12 I II h -54 I~ II 1II'-60 I' II~ 1II+28 I' II'III'-.11' II'

+ 14 I~ II'III -8 I' II 1II'-54 II' 111'-8 II' III,

1'1' = 54 I II III' + 62 I II~ III~ '36 I' II' III' + 3 I' II' - 14 I' II' III + 8 I~ II III'

-81 II' III'-12I1",

Y" = 54 I II III' + 26 I II~ III - 63 r 1/' 11/' - 3 I' l/' + In' 1/' 1/1 - 27 I' III' + 26 I~ II III ~

+1~1I~-3 I' lI'III-4I h lll'-27 II'III'-411".

y" = 271l/' II1'+41 II'-141'1I1Il[+27I'III'-18111l11l~-I'II~

+3 I~ II~ III +4 I' IIr.
Y33 = 3611I11I1+21~ 1I~-8111I' III-54 II' 111'_811', (62)

Extracting the factor

Ll~ = ().~ -)''''()''-)'I )'0.1 -).~)'

= 18 I II III+I~ II~-4111I1-411'-27111'

from the above expressions for Y,I , we arrive at the intrinsic expression

(63)

T( -" = ~ {[( - 3 I fl' III _I' III' + .1l/~) tr T( - I) + ( - 3 [ fl' + 2[' fl III + 2 W fll) tr (UT( - II)o
+( -2 I II II1+31I') tr(U~T(-')]I+[(-3 I 1I'+2 I'II III +2 II' III) tr TI- II

+ ( - 2 I II III + I'II' + I' III + II') tr (UT( - II) - (I II' + I' III) tr (U'TI- 1l)]U

+ [( -2 I II III + 3 In tr T' - " - (I 11'+ 12 III) tr (UTI-II) +2112 tr (U2TI- 1l)]U,

+3[(111 2 III + 12 III 2 _ I1~)T(-II+ (I 11'- 12 II III - 112 III)(UTI-'1+ T'-I)U)

+ (I II III - I1')(U 2T( - II + T'- IIU 2)J). (64)
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which is valid for any given U and T' - I).

4. CONCLUDING REMARKS
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For each integer m with Iml > 2. the method proposed above delivers an intrinsic
expression for the stress Tim) conjugate to the strain measure E(m) in the Seth-Hill class. The
invested labor. however. will increase rapidly with increasing Iml. Symbolic computation
could be useful here. because all operations in this method are algebraic.
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API)ENDIX

Throughout this paper we make usc of an algorithm that recasts a symmetric polynomial of the eigenvalues
).,. ).:.)" of the symmetric tensor U in terms of its principal invariants 1.11.111. As an illustration. we demonstrate
this algorithm for

which is a homogeneous symmetric polynomial of degree sill. In this instance the algorithm in question proceeds
as follows:

(i) Write down all the elementary homogeneous polynomials of degree sill in )". ),: and ),). namely.

C =r ),'),1)':',

F =r (),I)·i +),/' ),.1.,

W 29,t6-[
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(ii, Express in terms of the elementary polynomials each monomial of I, II, III that IS of degree SIX In i ,. i,:- i.,.

III' = A.

1 II III = 3,.1 - 8.

1'1I1=6A_38_C.

II'=6A+38+0,

I'll' = 15A+R8+2C+20+E,

I'll = 36A+22B+9C+60+.tE+F.

I' = 90A+608+30C+200->-15E+6F+G

(iii) Solve the above linear system with a triangular coefficient matrix to write the elementary polynomials in terms
of I. II and III :

A = '"'.

B = 111111 ~3 Ill'.

e = 1'111-3111 III +3 III'.

0= -3111 111+11'+3111'.

E = -21' 111+1' 11'+4111 111-2 1I'-311r.

F = I' II -I' II I - 4 I' II' + 7 I II III + 2 II' - 3 Ill'.

G = I' - t> I' II + t> I' II 1+9 I' IF - 12 I II III ~ 2 II' ->- 3 II 1'.

(iv) Expand ~ '. group its h:rms 1I11l) elementary polynomials and usc the results from (iii) to get the final
expression:

,\' -6.·' +2/1-2e~2{)+h'

IX I II II I + r II' ~ 4 l' II I - 4 II '- 27 II r.


